Channel Estimation for Intelligent Reflecting Surface Assisted MIMO Systems: A Tensor Modeling Approach
نویسندگان
چکیده
Intelligent reflecting surface (IRS) is an emerging technology for future wireless communications including 5G and especially 6G. It consists of a large 2D array (semi-)passive scattering elements that control the electromagnetic properties radio-frequency waves so reflected signals add coherently at intended receiver or destructively to reduce co-channel interference. The promised gains IRS-assisted depend on accuracy channel state information. In this paper, we address design multiple-input multiple-output (MIMO) communication system via tensor modeling approach aiming estimation problem using supervised (pilot-assisted) methods. Considering structured time-domain pattern pilots IRS phase shifts, present two methods rely parallel factor (PARAFAC) received signals. first one has closed-form solution based Khatri-Rao factorization cascaded MIMO channel, by solving rank-1 matrix approximation problems, while second iterative alternating scheme. common feature both decoupling estimates involved matrices (base station-IRS IRS-user terminal), which provides performance enhancements in comparison competing are unstructured LS channel. Design recommendations guide choice parameters discussed. Numerical results show effectiveness proposed receivers, highlight trade-offs, corroborate their superior compared LS-based solutions.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Channel estimation for MIMO multi-relay systems using a tensor approach
In this paper, we address the channel estimation problem for multiple-input multiple-output (MIMO) multi-relay systems exploiting measurements collected at the destination only. Assuming that the source, relays, and destination are multiple-antenna devices and considering a three-hop amplify-and-forward (AF)-based training scheme, new channel estimation algorithms capitalizing on a tensor model...
متن کاملHybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems
A hybrid pilots assisted channel estimation algorithm for multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems under low signal-to-noise ratio (SNR) and arbitrary Doppler spread scenarios is proposed. Motivated by the dissatisfactory performance of the optimal pilots (OPs) designed under static channels over multiple OFDM symbols imposed by fast fading...
متن کاملJoint channel estimation / data detection in MIMO-FBMC/OQAM systems - A tensor-based approach
Filter bank-based multicarrier (FBMC) systems are currently being considered as a prevalent candidate for replacing the long established cyclic prefix (CP)-based orthogonal frequency division multiplexing (CP-OFDM) in the physical layer of next generation communications systems. In particular, FBMC/OQAM has received increasing attention due to, among other features, its potential for maximum sp...
متن کاملAn Intelligent Channel Estimation Approach for MIMO-OFDM Systems using Meta-heuristic Optimization Algorithm
This research study mainly focuses to develop an efficient channel estimation approach through swarm intelligence approach with lesser computational complexity. Orthogonal Frequency Division Multiplexing (OFDM) is a modulation approach used to fight with the selection of frequency of the transmission channels to attain high data rate without any disturbances. OFDM principle is to gain popularit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2021
ISSN: ['1941-0484', '1932-4553']
DOI: https://doi.org/10.1109/jstsp.2021.3061274